WORKSHEET XI MATHEMATICAL INDUCTION

Prove the following by the principal of mathematical induction $\forall \mathrm{n} \in N$

1. $1+3+5+\ldots \ldots \ldots+(2 n-1)=n^{2}$
2. $5+15+45+\ldots \ldots \ldots+5.3^{n-1}=5 / 2\left(3^{n}-1\right)$.
3. $3.6+6.9+9.12+\ldots \ldots \ldots .+3 n(3 n+3)=3 n(n+1)(n+2)$
4. $1.3+3.5+5.7+\ldots \ldots \ldots+(2 n-1)(2 n+1)=n\left(4 n^{2}+6 n-1\right) / 3$.
5. $\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\ldots \ldots \ldots . .+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$.
6. $a+(a+d)+(a+2 d)+\ldots \ldots \ldots+(a+(n-1) d)=n / 2(2 a+(n-1) d)$.
7. $\frac{1}{1}+\frac{1}{1+2}+\frac{1}{1+2+3}+\ldots \ldots \ldots . .+\frac{1}{1+2+3+\cdots \quad n}=\frac{2 n}{n+1}$.
8. $X^{n}-Y^{n}$ is divisible by $x-y$
9. $4^{n}+15 n-1$ is divisible by 9 .
10. $3^{4 n+1}+2^{2 n+2}$ is divisible by 7 .
11. $11^{n+2}+12^{2 n+1}$ is divisible by 133 .
$12.2 .7^{n}+3.5^{n}-5$ is divisible by 24.
12. $n(n+1)(n+2)$ is divisible by 6 .
13. $2^{n}<3^{n}$
14. Use this inequality $2 \mathrm{n}+7<(\mathrm{n}+3)^{2}, \forall \mathrm{n} \in N$ and prove that

$$
(n+3)^{2} \leq 2^{n+3}
$$

