Prove the following by the principal of mathematical induction $\forall n \in N$

1. $1+3+5+\ldots+(2n-1)=n^2$ 2. $5 + 15 + 45 + \dots + 5.3^{n-1} = 5/2 (3^n - 1)$. 3. $3.6 + 6.9 + 9.12 + \dots + 3n(3n+3) = 3n(n+1)(n+2)$ 4. $1.3 + 3.5 + 5.7 + \dots + (2n - 1)(2n + 1) = n(4n^2 + 6n - 1)/3$. 5. $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \dots + \frac{1}{(2n-1)(2n+1)} = \frac{n}{2n+1}$ 6. $a + (a + d) + (a + 2d) + \dots + (a + (n-1)d) = n/2 (2a + (n-1)d)$. 7. $\frac{1}{1} + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+3+\dots+n} = \frac{2n}{n+1}$ 8. $X^{n} - Y^{n}$ is divisible by x - y 9. $4^{n} + 15 n - 1$ is divisible by 9. 10. 3 $^{4n+1}$ + 2 $^{2n+2}$ is divisible by 7. 11. 11 $^{n+2}$ + 12 $^{2n+1}$ is divisible by 133. $12.2.7^{n} + 3.5^{n} - 5$ is divisible by 24. 13. n(n+1)(n+2) is divisible by 6. 14. $2^n < 3^n$ 15.Use this inequality $2n + 7 < (n + 3)^2$, $\forall n \in N$ and prove that $(n+3)^2 < 2^{n+3}$.